Antifungal metabolites (monorden, monocillins I, II, III) from Colletotrichum graminicola, a systemic vascular pathogen of maize.

نویسندگان

  • Donald T Wicklow
  • Annalisa M Jordan
  • James B Gloer
چکیده

Colletotrichum graminicola is a systemic vascular pathogen that causes anthracnose stalk rot and leaf blight of maize. In the course of an effort to explore the potential presence and roles of C. graminicola metabolites in maize, ethyl acetate extracts of solid substrate fermentations of several C. graminicola isolates from Michigan and Illinois were found to be active against Aspergillus flavus and Fusarium verticillioides, both mycotoxin-producing seed-infecting fungal pathogens. Chemical investigations of the extract of one such isolate (NRRL 47511) led to the isolation of known metabolites monorden (also known as radicicol) and monocillins I-III as major components. Monorden and monocillin I displayed in vitro activity against the stalk- and ear-rot pathogen Stenocarpella maydis while only the most abundant metabolite (monorden) showed activity against foliar pathogens Alternaria alternata, Bipolaris zeicola, and Curvularia lunata. Using LC-HRESITOFMS, monorden was detected in steam-sterilized maize stalks and stalk residues inoculated with C. graminicola but not in the necrotic stalk tissues of wound-inoculated plants grown in an environmental chamber. Monorden and monocillin I can bind and inhibit plant Hsp90, a chaperone of R-proteins. It is hypothesized that monorden and monocillins could support the C. graminicola disease cycle by disrupting maize plant defenses and by excluding other fungi from necrotic tissues and crop residues. This is the first report of natural products from C. graminicola, as well as the production of monorden and monocillins by a pathogen of cereals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize.

We have previously shown that the beneficial filamentous fungus Trichoderma virens secretes the highly effective hydrophobin-like elicitor Sm1 that induces systemic disease resistance in the dicot cotton (Gossypium hirsutum). In this study we tested whether colonization of roots by T. virens can induce systemic protection against a foliar pathogen in the monocot maize (Zea mays), and we further...

متن کامل

Root-expressed maize lipoxygenase 3 negatively regulates induced systemic resistance to Colletotrichum graminicola in shoots

We have previously reported that disruption of a maize root-expressed 9-lipoxygenase (9-LOX) gene, ZmLOX3, results in dramatic increase in resistance to diverse leaf and stalk pathogens. Despite evident economic significance of these findings, the mechanism behind this increased resistance remained elusive. In this study, we found that increased resistance of the lox3-4 mutants is due to consti...

متن کامل

Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants

Pseudomonas putida KT2440 (KT2440) rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and...

متن کامل

The application of laser microdissection to in planta gene expression profiling of the maize anthracnose stalk rot fungus Colletotrichum graminicola.

Laser microdissection (LM) offers a potential means for deep sampling of a fungal plant-pathogen transcriptome during the infection process using whole-genome DNA microarrays. The use of a fluorescent protein-expressing fungus can greatly facilitate the identification of fungal structures for LM sampling. However, fixation methods that preserve both tissue histology and protein fluorescence, an...

متن کامل

Draft Genome Sequence of Colletotrichum falcatum - A Prelude on Screening of Red Rot Pathogen in Sugarcane

Colletotrichum falcatum, a concealed fungal ascomycete causes red rot, which is a serious disease in sugarcane. It infects economically important stalk tissues, considered as store house of sugar in sugarcane. The study is to find genetic complexities of C. falcatum in establishing this as a stalk infecting pathogen and to decipher the unique lifestyle of this pathogen using NGS technology. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mycological research

دوره 113 Pt 12  شماره 

صفحات  -

تاریخ انتشار 2009